Data and Model-Driven Selection Using Color Regions
نویسنده
چکیده
A key problem in model-based object recognition is selection, namely, the problem of determining which regions in the image are likely to come from a single object. In this paper we present an approach that uses color as a cue to perform selection either based solely on image-data (data-driven), or based on the knowledge of the color description of the model (model-driven). Specifically, the paper presents a method of color specification in terms of perceptual color categories and shows its relevance for the task of selection. The color categories are used to develop a fast region segmentation algorithm that extracts perceptual color regions in images. The color regions extracted form the basis for performing data and model-driven selection. Data-driven selection is achieved by selecting salient color regions as judged by a color-saliency measure that emphasizes attributes that are also important in human color perception. The approach to model-driven selection, on the other hand, exploits the color and other region information in the 3d model object to locate instances of the object in a given image. The approach presented tolerates some of the problems of occlusion, pose and illumination changes that make a model instance in an image appear different from its original description. Finally, the utility of color-based selection is demonstrated by showing the extent of search reduction possible when color-based selection is integrated with a recognition system.
منابع مشابه
Visual Attention Guided Seed Selection for Color Image Segmentation
The "seeded region growing" (SRG) is a segmentation technique which performs an image segmentation with respect to a set of initial points, known as seeds. Given a set of seeds, SRG then grows the regions around each seed, based on the conventional region growing postulate of similarity of pixels within regions. The choice of the seeds is considered as one of the key steps on which the performa...
متن کاملA Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملFlood Flow Frequency Model Selection Using L-moment Method in Arid and Semi Arid Regions of Iran
Statistical frequency analysis is the most common procedure for the analysis of flood data at a gauged location thatin first step it is needed to select a model to represent the population. Among them, the central moment has been themost common and widely used, and with the using of computers, the application of the maximum likelihood hasincreased. This research was carried out in order to reco...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کامل